
February 1999 The Delphi Magazine 49

Under Construction:
Usenet News Reading, 2
by Bob Swart

Last month we covered the
basics of NNTP (Network News

Transfer Protocol), including a
TBNNTP component that could con-
nect to a news server, retrieve a list
of newsgroups, subscribe to a
newsgroup and retrieve articles
from that newsgroup.

This time, we’ll add the abilities
to post messages to newsgroups,
interpret the response status code
and manage information about
both the newsgroups we’re sub-
scribing to and the messages we’ve
read already (so we don’t have to
retrieve the whole list of news-
groups and articles every time we
connect to our news server).

NNTP Commands
Last time, we started our TBNNTP
component and implemented the
LIST, GROUP, ARTICLE (combined
HEADand STAT) and QUITcommands.

With LIST we get a list of avail-
able newsgroups, with GROUP fol-
lowed by the name of a newsgroup
we can ‘join’ a newsgroup, and with
ARTICLE followed by an article
number we can retrieve that article
from the current newsgroup. We
can also use HEAD and STAT to get
the header and contents of an
article (rather than the ARTICLE
command which gets the header
and contents combined). Finally,
we can perform a QUIT command to
terminate the connection with the
NNTP server.

This time, we need to add some
more commands, namely HELP and
POST (for both replying to and
posting new articles), and we’ll

implement response status code
checking as well.

Help And Status
The HELP command can be quite
useful, as I found that not all NNTP
servers support all the commands
that we implement in the TBNNTP
component. The NNTP server will
answer the HELP command with a
summary of commands that are
supported by this implementation
of the server. The help itself is
returned as text, terminated by the
EOD character (a single period on
an otherwise empty line).

To implement this, we need to
send the HELP command in the
SocketWrite event handler, and
receive the summary of commands
in the SocketRead event handler
(see the full listing of TBNNTP in
Listing 3 for details).

Some news servers don’t sup-
port the POST command that we
need as well. Of course, we can
parse the output from the HELP
command to see if POST is actually
supported by the server, but
there’s an easier way to determine
this using response status codes.
With each command that we give
to the news server, it responds
with an acknowledgement mes-
sage, starting with a response or
status code. This is also the case
for the welcome message (the first
message we receive when we con-
nect to the news server). In fact,
the welcome message indicates
whether or not the POST command
is available to us; all we need to do
is look at the welcome status code
that accompanies this welcome
message. Welcome code 200

means posting is allowed, while
welcome code 201 means no post-
ing is allowed (ie read-only access
to the news server).

It’s a small change to add a
Boolean property ReadOnly to the
TBNNTP component, that gets its
value from the status code in the
welcome message. This property
will indicate, at runtime, whether
we have read-only access to the
server, or whether we can actually
post new articles (see Listing 1).

The welcome message (and in
fact each response status code)
will be received by the SocketRead
event and can be parsed in the first
few lines of that routine, as shown
in Listing 2.

For now, we just use the
ResponseCode to determine the
value of the fReadOnly property
after we received the welcome
message. We’ll shortly start to use
the response status code at
another time as well, namely when
posting articles.

Posting Articles
The POST command can be used to
send a new article to the current
newsgroup. After the POST com-
mand, the NNTP server can return
code 340 (ready) or code 440 (per-
mission denied). Response code
340 indicates that the article to be
posted should now be sent, while
code 440 indicates that posting is
prohibited (in which case we also
should have received a welcome
code 201).

If posting is permitted, the arti-
cle should be presented in the
format specified by RFC850, which
means it should start with a header
containing fields for NEWSGROUPS,
FROM (TO is not needed), SUBJECT
and DATE, followed by an empty
line, followed by the body of the
article, terminated by a single
period on an otherwise empty line.
The tricky part is not listing the

➤ Listing 1

type
TBNNTP = class(TComponent)
...
private
fReadOnly: Boolean;

published
property ReadOnly: Boolean read fReadOnly;

end {TBNNTP};

50 The Delphi Magazine Issue 42

procedure TBNNTP.SocketRead(Sender: TObject; Socket: TCustomWinSocket);
var ResponseCode: Integer;
begin
Status := Socket.ReceiveText;
ResponseCode := StrToInt(Copy(Status,1,Pos('#32',Status)-1));
...
case Command of
CmdStart :
begin
fReadOnly := not (ResponseCode = 200);
...

end;
...

end;
...

end {SocketRead};

current newsgroup name (that
should be easy), but to include a
valid date that isn’t considered
‘too long in the past’ by the news
server. The format that DNews
accepts can be returned by a call to
FormdatDateTime:

EditDate.Text := FormatDateTime(

‘dd mmm yyyy hh:mm:ss’, Now);

After the article’s header and body
have been completely sent by the
client to the server, a final return
code of 240 (meaning all is OK) or
441 (meaning the posting failed)
will be sent, so we know the mes-
sage is posted correctly and will be
available to all news servers and
readers all over the world shortly.
Note that we get a code 441 (fail) if
the news server considers the arti-
cle too old, for example (which is
why we need to include a correct
date and time string), as shown in
Listing 3.

Full source code of the final
TBNNTP component can be found on
disk with this issue. Don’t hesitate
to contact me by email at
bob@bolesian.nl if you have any
questions, comments or feedback
on this article!

BobNews v0.2
Version 0.2 of BobNews (we
started version 0.1 last month)
now also has the ability to post
new messages or reply to existing
messages in a newsgroup. Note
that the Post (reply) button is dis-
abled if the ReadOnly property is of
the TBNNTP component is True and if
we’ve joined a
newsgroup: see Figure 1.
If we click on the Post
(reply) button, the code
shown in Listing 4 will be
executed.

This will pop up a new
modal form that we can
use to enter the subject
and content of the arti-
cle. Note that the Sender

and Date are read-only fields (the
value of the Date editbox is deter-
mined when this form is created):
see Figure 2.

Further updates and enhance-
ments to this application should
include the addition of my TBSMTP

unit DrBobNEW;
{$DEFINE DEBUG}
interface
uses
Classes, {$IFDEF DEBUG}StdCtrls,{$ENDIF} ScktComp;

const
MaxGroups = 256;

type
TBNNTP = class(TComponent)
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

public
{$IFDEF DEBUG}
StatusMemo: TMemo; { pointer to Form's Memo }
{$ENDIF}
procedure Connect;
procedure JoinNewsGroup(const NewsGroup: String);
procedure ReadArticle(ArticleNr: Integer);
procedure PostArticle(const NewArticle: String);
procedure Disconnect;

protected
_Socket: TClientSocket;
procedure SocketRead(Sender: TObject; Socket:
TCustomWinSocket);

procedure SocketWrite(Sender: TObject; Socket:
TCustomWinSocket);

procedure Wait;
private
fNewsServer: String;

published
property NewsServer: String read fNewsServer
write fNewsServer;

private // readonly or posting articles?
fReadOnly: Boolean;
fNewArticle: String;

published
property ReadOnly: Boolean read fReadOnly;

private // newgroups
fNumGroups: Integer;
fNewsGroups: Array[0..MaxGroups-1] of String;

function GetNewsGroup(Index: Integer): String;
public
property NewsGroups: Integer read fNumGroups;
property NewsGroup[Index: Integer]: String
read GetNewsGroup;

private // articles
fFirstArticle,fLastArticle: Integer;
fArticles: Array of String;
function GetArticle(Index: Integer): String;

public
property FirstArticle: Integer read fFirstArticle;
property LastArticle: Integer read fLastArticle;
property Article[Index: Integer]: String
read GetArticle;

private // internal
WinSocket: TCustomWinSocket;
Command: Integer;
ArtNr: Integer;
Status: String; { also NewsgroupName }
{$IFDEF DEBUG}
Indent: Integer;
{$ENDIF}
end;
procedure Register;

implementation
uses SysUtils, Forms;
const
CmdStart = 0;
CmdList = 1; { list newsgroups }
CmdJoin = 2; { join newsgroup }
CmdMess = 3; { read article # }
CmdPost = 4; { post article }
CmdPost2 = 5; { post content }
CmdHelp = 7; { summary commands }
CmdDone = 42; { signals ready }
CmdQuit = 666;
NNTP = 119;
CRLF = #13#10;

constructor TBNNTP.Create(AOwner: TComponent);
begin

{ ** LISTING CONTINUES ON FACING PAGE... **}

➤ Listing 3

➤ Listing 2

➤ Figure 1

February 1999 The Delphi Magazine 51

inherited Create(AOwner);
_Socket := TClientSocket.Create(Self);
_Socket.Port := NNTP;
_Socket.OnRead := SocketRead;
_Socket.OnWrite := SocketWrite;
fReadOnly := True;
{$IFDEF DEBUG}
Indent := 0;
StatusMemo := nil;
{$ENDIF}
WinSocket := nil

end {Create};
destructor TBNNTP.Destroy;
begin
_Socket.OnRead := nil;
_Socket.OnWrite := nil;
//if Assigned(WinSocket) and (Command <> CmdQuit) then
// WinSocket.SendText('QUIT'+ CRLF);
WinSocket := nil;
_Socket.Free;
_Socket := nil;
{$IFDEF DEBUG}
StatusMemo := nil;
{$ENDIF}
inherited Destroy

end {Destroy};
{ … NOT ALL CODE SHOWN: SEE DISK FOR FULL LISTING }
procedure TBNNTP.SocketRead(Sender: TObject;

Socket: TCustomWinSocket);
var
i,j: Integer;
EOD: Boolean; { end-of-data }
ResponseCode: Integer;

begin
{$IFDEF DEBUG}
if Assigned(StatusMemo) then
StatusMemo.Lines.Add(Space(Indent)+'SocketRead');

{$ENDIF}
WinSocket := Socket; { talk back? }
Status := Socket.ReceiveText;
ResponseCode := StrToInt(Copy(Status,1,
Pos(' ',Status)-1));

while (Length(Status) > 0) and (Status[Length(Status)]
in [#10,#13]) do
Delete(Status,Length(Status),1);

EOD := Pos(CRLF+'.',Copy(Status,Length(Status)-4,5)) > 0;
// Pos(CRLF+'.',Status) > (Length(Status)-4);
{$IFDEF DEBUG}
if Assigned(StatusMemo) then begin
if Command <> CmdMess then
StatusMemo.Lines.Add(Space(Indent)+Status)

else StatusMemo.Lines.Add(Space(Indent)+Copy(
Status,1,Pos(#13,Status)-1));

StatusMemo.Update; { force repaint }
end else if IsConsole then
writeln(Status);

{$ENDIF}
case Command of
CmdStart:
begin
fReadOnly := not (ResponseCode = 200);
Command := CmdList; { get newsgroup list }
ArtNr := 0

end;
CmdPost:
begin
if ResponseCode = 340 then
Command := CmdPost2

else
Command := CmdDone

end;
CmdPost2:
begin
Command := CmdDone

end;
CmdHelp:
begin
{ receive summary of commands }
Command := CmdDone;

end;
CmdList:
begin
fNumGroups := -1;
while Length(Status) > 1 do begin
Inc(fNumGroups);
i := Pos(#13,Status);
j := Pos(#10,Status);
if (i = 0) and (j = 0) then
i := Length(Status)

else if j > i then
i := j;

j := 1;
while (j < i) and (Status[j] > #32) do
Inc(j);

if fNumGroups > 0 then begin
fNewsGroups[fNumGroups-1] := Copy(Status,1,j-1);
if fNewsGroups[fNumGroups-1] = '' then
Dec(fNumGroups)

end;
Delete(Status,1,i);
while (Length(Status) > 0) and (Status[1] in
[#10,#13]) do

Delete(Status,1,1)
end;
if (Status = '.') or EOD then
Command := CmdDone

else
ArtNr := -1 { continue }

end;
CmdJoin:
begin
i := Pos(' ',Status);
Delete(Status,1,i); { status code }
i := Pos(' ',Status);
Delete(Status,1,i); { number of articles }
i := Pos(' ',Status);
try
fFirstArticle := StrToInt(Copy(Status,1,i-1))

except
fFirstArticle := 1

end;
Delete(Status,1,i); { last article }
i := Pos(' ',Status);
try
fLastArticle := StrToInt(Copy(Status,1,i-1))

except
fLastArticle := 1

end;
fArticles := nil;
if fLastArticle >= fFirstArticle then
// allocate
SetLength(fArticles,fLastArticle-fFirstArticle+1);

{$IFDEF DEBUG}
if Assigned(StatusMemo) then
StatusMemo.Lines.Add(Space(Indent)+IntToStr(
fFirstArticle)+ ' to '+IntToStr(fLastArticle))

else if IsConsole then
writeln(fFirstArticle,' to ',fLastArticle);

{$ENDIF}
Command := CmdDone

end;
CmdMess:
begin
if ArtNr < 0 then { remaining part of article }
fArticles[-ArtNr-fFirstArticle] :=
fArticles[-ArtNr-fFirstArticle] + Status

else begin
i := Pos(#13,Status);
if i > 0 then begin
Delete(Status,1,i);
while (Length(Status) > 0) and (Status[1] in
[#10,#13]) do
Delete(Status,1,1)

end;
fArticles[ArtNr-fFirstArticle] := Status

end;
if EOD then
Command := CmdDone

else
ArtNr := -abs(ArtNr) { negative }

end;
CmdQuit: Command := CmdDone

end;
if Command <> CmdDone then
SocketWrite(Sender, Socket)

end {SocketRead};
procedure TBNNTP.SocketWrite(Sender: TObject;

Socket: TCustomWinSocket);
var Send: String;
begin
Send := '';
case Command of
CmdList : if ArtNr >= 0 then

Send := 'LIST';
CmdJoin : Send := 'GROUP ' + Status;
CmdMess : if ArtNr > 0 then

Send := 'ARTICLE ' + IntToStr(ArtNr);
CmdPost : Send := 'POST';
CmdPost2 : Send := fNewArticle;
CmdHelp : Send := 'HELP';
CmdQuit : Send := 'QUIT'

end;
{$IFDEF DEBUG}
if Assigned(StatusMemo) then
StatusMemo.Lines.Add(Space(Indent)+'> '+Send)

else if IsConsole then
writeln('> '+Send);

{$ENDIF}
Socket.SendText(Send + CRLF)

end {SocketWrite};
procedure TBNNTP.PostArticle(const NewArticle: String);
begin
if not fReadOnly then begin
fNewArticle := NewArticle;
Command := CmdPost;
SocketWrite(Self,WinSocket);
Wait

end
end {PostArticle};
procedure Register;
begin
RegisterComponents('Dr.Bob',[TBNNTP])

end;
end.

52 The Delphi Magazine Issue 42

and TBPOP3 components, to allow
us to send and read email mes-
sages as well: often you need to
reply by email to an article in a
newsgroup. This, as well
as including uuencoded
attachments, is left as an
excercise for the reader.
Note that the full source
code for TBSMTP and
TBPOP3 can be found in
Issues 35 and 36, so it
shouldn’t be too hard to

extend BobNews [The companion
disk contents are also on our
website at www.itecuk.com for
download. Ed].

Next Time
Distributed applications is one of
the new areas where Delphi offers
us support with MIDAS and
CORBA, among others. Next time,
I’d like to ‘step down’ and explore
CORBA from the ground up. We’ll
see how we can make our own
CORBA objects and communicate
with them (even from other
machines, as long as they are con-
nected in some kind of network
that supports CORBA). Should be
quite interesting, and very useful
as well, so stay tuned...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is a technical
consultant and webmaster using
Delphi, JBuilder and C++Builder
for Bolesian and freelance techni-
cal author. When he’s not coding
or writing, Bob likes to watch
video tapes of Star Trek Voyager
and Deep Space Nine with his
4.5-year-old son Erik Mark Pascal
and his 2-year-old daughter
Natasha Louise Delphine.

➤ Listing 4

procedure TFormNews.BtnPostReplyClick(Sender: TObject);
begin
with TFormPostReply.Create(Self) do
try
if ShowModal = mrOk then begin
MemoArticle.Lines.Insert(0,'');
MemoArticle.Lines.Insert(0,'Newsgroups: '+StatusBar.SimpleText);
MemoArticle.Lines.Insert(0,'Subject: '+EditSubject.Text);
MemoArticle.Lines.Insert(0,'Date: '+EditDate.Text);
MemoArticle.Lines.Insert(0,'From: '+EditFrom.Text);
MemoArticle.Lines.Add('.');
BNNTP.PostArticle(MemoArticle.Text)

end
finally
Free

end
end;

➤ Figure 2

	NNTP Commands
	Help And Status
	Posting Articles
	BobNews v0.2
	Next Time

